Copied to
clipboard

G = C23.2F5order 160 = 25·5

1st non-split extension by C23 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.2F5, Dic5.23D4, C10.5M4(2), C22⋊(C5⋊C8), (C2×C10)⋊1C8, C52(C22⋊C8), C10.9(C2×C8), (C22×C10).3C4, C2.3(C22⋊F5), C22.14(C2×F5), (C2×Dic5).12C4, C10.10(C22⋊C4), C2.3(C22.F5), (C22×Dic5).7C2, (C2×Dic5).53C22, (C2×C5⋊C8)⋊2C2, C2.5(C2×C5⋊C8), (C2×C10).11(C2×C4), SmallGroup(160,87)

Series: Derived Chief Lower central Upper central

C1C10 — C23.2F5
C1C5C10Dic5C2×Dic5C2×C5⋊C8 — C23.2F5
C5C10 — C23.2F5
C1C22C23

Generators and relations for C23.2F5
 G = < a,b,c,d,e | a2=b2=c2=d5=1, e4=c, eae-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

2C2
2C2
2C22
2C22
5C4
5C4
10C4
2C10
2C10
5C2×C4
5C2×C4
10C8
10C8
10C2×C4
10C2×C4
2C2×C10
2Dic5
2C2×C10
5C2×C8
5C22×C4
5C2×C8
2C5⋊C8
2C2×Dic5
2C5⋊C8
2C2×Dic5
5C22⋊C8

Character table of C23.2F5

 class 12A2B2C2D2E4A4B4C4D4E4F58A8B8C8D8E8F8G8H10A10B10C10D10E10F10G
 size 11112255551010410101010101010104444444
ρ11111111111111111111111111111    trivial
ρ21111-1-11111-1-111-1-1-1111-1-11-1-111-1    linear of order 2
ρ31111-1-11111-1-11-1111-1-1-11-11-1-111-1    linear of order 2
ρ41111111111111-1-1-1-1-1-1-1-11111111    linear of order 2
ρ51111-1-1-1-1-1-1111ii-i-i-i-iii-11-1-111-1    linear of order 4
ρ61111-1-1-1-1-1-1111-i-iiiii-i-i-11-1-111-1    linear of order 4
ρ7111111-1-1-1-1-1-11-ii-i-iii-ii1111111    linear of order 4
ρ8111111-1-1-1-1-1-11i-iii-i-ii-i1111111    linear of order 4
ρ91-11-11-1ii-i-ii-i1ζ85ζ83ζ85ζ8ζ83ζ87ζ8ζ87-1-1111-1-1    linear of order 8
ρ101-11-1-11ii-i-i-ii1ζ8ζ83ζ85ζ8ζ87ζ83ζ85ζ871-1-1-11-11    linear of order 8
ρ111-11-1-11ii-i-i-ii1ζ85ζ87ζ8ζ85ζ83ζ87ζ8ζ831-1-1-11-11    linear of order 8
ρ121-11-11-1ii-i-ii-i1ζ8ζ87ζ8ζ85ζ87ζ83ζ85ζ83-1-1111-1-1    linear of order 8
ρ131-11-1-11-i-iiii-i1ζ83ζ8ζ87ζ83ζ85ζ8ζ87ζ851-1-1-11-11    linear of order 8
ρ141-11-1-11-i-iiii-i1ζ87ζ85ζ83ζ87ζ8ζ85ζ83ζ81-1-1-11-11    linear of order 8
ρ151-11-11-1-i-iii-ii1ζ87ζ8ζ87ζ83ζ8ζ85ζ83ζ85-1-1111-1-1    linear of order 8
ρ161-11-11-1-i-iii-ii1ζ83ζ85ζ83ζ87ζ85ζ8ζ87ζ8-1-1111-1-1    linear of order 8
ρ1722-2-200-22-22002000000000-200-220    orthogonal lifted from D4
ρ1822-2-2002-22-2002000000000-200-220    orthogonal lifted from D4
ρ192-2-2200-2i2i2i-2i002000000000200-2-20    complex lifted from M4(2)
ρ202-2-22002i-2i-2i2i002000000000200-2-20    complex lifted from M4(2)
ρ214444-4-4000000-1000000001-111-1-11    orthogonal lifted from C2×F5
ρ22444444000000-100000000-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ2344-4-400000000-100000000-515-51-15    orthogonal lifted from C22⋊F5
ρ2444-4-400000000-10000000051-551-1-5    orthogonal lifted from C22⋊F5
ρ254-44-44-4000000-10000000011-1-1-111    symplectic lifted from C5⋊C8, Schur index 2
ρ264-44-4-44000000-100000000-1111-11-1    symplectic lifted from C5⋊C8, Schur index 2
ρ274-4-4400000000-100000000-5-1-55115    symplectic lifted from C22.F5, Schur index 2
ρ284-4-4400000000-1000000005-15-511-5    symplectic lifted from C22.F5, Schur index 2

Smallest permutation representation of C23.2F5
On 80 points
Generators in S80
(2 59)(4 61)(6 63)(8 57)(9 26)(11 28)(13 30)(15 32)(17 37)(19 39)(21 33)(23 35)(42 55)(44 49)(46 51)(48 53)(66 80)(68 74)(70 76)(72 78)
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 57)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(41 54)(42 55)(43 56)(44 49)(45 50)(46 51)(47 52)(48 53)(65 79)(66 80)(67 73)(68 74)(69 75)(70 76)(71 77)(72 78)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)
(1 12 18 41 79)(2 42 13 80 19)(3 73 43 20 14)(4 21 74 15 44)(5 16 22 45 75)(6 46 9 76 23)(7 77 47 24 10)(8 17 78 11 48)(25 34 50 69 62)(26 70 35 63 51)(27 64 71 52 36)(28 53 57 37 72)(29 38 54 65 58)(30 66 39 59 55)(31 60 67 56 40)(32 49 61 33 68)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (2,59)(4,61)(6,63)(8,57)(9,26)(11,28)(13,30)(15,32)(17,37)(19,39)(21,33)(23,35)(42,55)(44,49)(46,51)(48,53)(66,80)(68,74)(70,76)(72,78), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,79)(66,80)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,12,18,41,79)(2,42,13,80,19)(3,73,43,20,14)(4,21,74,15,44)(5,16,22,45,75)(6,46,9,76,23)(7,77,47,24,10)(8,17,78,11,48)(25,34,50,69,62)(26,70,35,63,51)(27,64,71,52,36)(28,53,57,37,72)(29,38,54,65,58)(30,66,39,59,55)(31,60,67,56,40)(32,49,61,33,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (2,59)(4,61)(6,63)(8,57)(9,26)(11,28)(13,30)(15,32)(17,37)(19,39)(21,33)(23,35)(42,55)(44,49)(46,51)(48,53)(66,80)(68,74)(70,76)(72,78), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,79)(66,80)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,12,18,41,79)(2,42,13,80,19)(3,73,43,20,14)(4,21,74,15,44)(5,16,22,45,75)(6,46,9,76,23)(7,77,47,24,10)(8,17,78,11,48)(25,34,50,69,62)(26,70,35,63,51)(27,64,71,52,36)(28,53,57,37,72)(29,38,54,65,58)(30,66,39,59,55)(31,60,67,56,40)(32,49,61,33,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(2,59),(4,61),(6,63),(8,57),(9,26),(11,28),(13,30),(15,32),(17,37),(19,39),(21,33),(23,35),(42,55),(44,49),(46,51),(48,53),(66,80),(68,74),(70,76),(72,78)], [(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,57),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(41,54),(42,55),(43,56),(44,49),(45,50),(46,51),(47,52),(48,53),(65,79),(66,80),(67,73),(68,74),(69,75),(70,76),(71,77),(72,78)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80)], [(1,12,18,41,79),(2,42,13,80,19),(3,73,43,20,14),(4,21,74,15,44),(5,16,22,45,75),(6,46,9,76,23),(7,77,47,24,10),(8,17,78,11,48),(25,34,50,69,62),(26,70,35,63,51),(27,64,71,52,36),(28,53,57,37,72),(29,38,54,65,58),(30,66,39,59,55),(31,60,67,56,40),(32,49,61,33,68)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

C23.2F5 is a maximal subgroup of
(C2×C20)⋊1C8  (C22×C4).F5  C5⋊(C23⋊C8)  C24.F5  C5⋊C88D4  C5⋊C8⋊D4  D10⋊M4(2)  Dic5⋊M4(2)  C23.(C2×F5)  Dic5.12M4(2)  D10.11M4(2)  C20.34M4(2)  D1010M4(2)  Dic5.13M4(2)  C20.30M4(2)  D4×C5⋊C8  C5⋊C87D4  C202M4(2)  (C2×D4).7F5  (C2×D4).8F5  C24.4F5  Dic5.22D12  C30.22M4(2)  Dic5.S4
C23.2F5 is a maximal quotient of
C10.6M5(2)  C20.29M4(2)  (C2×C20)⋊1C8  C10.(C4⋊C8)  Dic5.23D8  Dic5.12Q16  D4.(C5⋊C8)  C24.F5  Dic5.22D12  C30.22M4(2)

Matrix representation of C23.2F5 in GL6(𝔽41)

100000
0400000
001000
000100
0000400
0000040
,
4000000
0400000
0040000
0004000
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
100000
010000
0074000
0084000
0000035
0000734
,
020000
2100000
000010
000001
00143100
00322700

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,8,0,0,0,0,40,40,0,0,0,0,0,0,0,7,0,0,0,0,35,34],[0,21,0,0,0,0,2,0,0,0,0,0,0,0,0,0,14,32,0,0,0,0,31,27,0,0,1,0,0,0,0,0,0,1,0,0] >;

C23.2F5 in GAP, Magma, Sage, TeX

C_2^3._2F_5
% in TeX

G:=Group("C2^3.2F5");
// GroupNames label

G:=SmallGroup(160,87);
// by ID

G=gap.SmallGroup(160,87);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,86,2309,1169]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=1,e^4=c,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

Export

Subgroup lattice of C23.2F5 in TeX
Character table of C23.2F5 in TeX

׿
×
𝔽