metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.2F5, Dic5.23D4, C10.5M4(2), C22⋊(C5⋊C8), (C2×C10)⋊1C8, C5⋊2(C22⋊C8), C10.9(C2×C8), (C22×C10).3C4, C2.3(C22⋊F5), C22.14(C2×F5), (C2×Dic5).12C4, C10.10(C22⋊C4), C2.3(C22.F5), (C22×Dic5).7C2, (C2×Dic5).53C22, (C2×C5⋊C8)⋊2C2, C2.5(C2×C5⋊C8), (C2×C10).11(C2×C4), SmallGroup(160,87)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.2F5
G = < a,b,c,d,e | a2=b2=c2=d5=1, e4=c, eae-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Character table of C23.2F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 10A | 10B | 10C | 10D | 10E | 10F | 10G | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 4 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | -i | -i | i | i | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | i | i | -i | -i | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | -i | i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | i | -i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | i | -i | 1 | ζ85 | ζ83 | ζ85 | ζ8 | ζ83 | ζ87 | ζ8 | ζ87 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | -i | -i | i | 1 | ζ8 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ87 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | -i | -i | i | 1 | ζ85 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ83 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | i | -i | 1 | ζ8 | ζ87 | ζ8 | ζ85 | ζ87 | ζ83 | ζ85 | ζ83 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | i | i | -i | 1 | ζ83 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ85 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | i | i | -i | 1 | ζ87 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ8 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | -i | i | 1 | ζ87 | ζ8 | ζ87 | ζ83 | ζ8 | ζ85 | ζ83 | ζ85 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | -i | i | 1 | ζ83 | ζ85 | ζ83 | ζ87 | ζ85 | ζ8 | ζ87 | ζ8 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | complex lifted from M4(2) |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | complex lifted from M4(2) |
ρ21 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | orthogonal lifted from C2×F5 |
ρ22 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√5 | 1 | √5 | -√5 | 1 | -1 | √5 | orthogonal lifted from C22⋊F5 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √5 | 1 | -√5 | √5 | 1 | -1 | -√5 | orthogonal lifted from C22⋊F5 |
ρ25 | 4 | -4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | symplectic lifted from C5⋊C8, Schur index 2 |
ρ26 | 4 | -4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | symplectic lifted from C5⋊C8, Schur index 2 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√5 | -1 | -√5 | √5 | 1 | 1 | √5 | symplectic lifted from C22.F5, Schur index 2 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √5 | -1 | √5 | -√5 | 1 | 1 | -√5 | symplectic lifted from C22.F5, Schur index 2 |
(2 59)(4 61)(6 63)(8 57)(9 26)(11 28)(13 30)(15 32)(17 37)(19 39)(21 33)(23 35)(42 55)(44 49)(46 51)(48 53)(66 80)(68 74)(70 76)(72 78)
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 57)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(41 54)(42 55)(43 56)(44 49)(45 50)(46 51)(47 52)(48 53)(65 79)(66 80)(67 73)(68 74)(69 75)(70 76)(71 77)(72 78)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)
(1 12 18 41 79)(2 42 13 80 19)(3 73 43 20 14)(4 21 74 15 44)(5 16 22 45 75)(6 46 9 76 23)(7 77 47 24 10)(8 17 78 11 48)(25 34 50 69 62)(26 70 35 63 51)(27 64 71 52 36)(28 53 57 37 72)(29 38 54 65 58)(30 66 39 59 55)(31 60 67 56 40)(32 49 61 33 68)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (2,59)(4,61)(6,63)(8,57)(9,26)(11,28)(13,30)(15,32)(17,37)(19,39)(21,33)(23,35)(42,55)(44,49)(46,51)(48,53)(66,80)(68,74)(70,76)(72,78), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,79)(66,80)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,12,18,41,79)(2,42,13,80,19)(3,73,43,20,14)(4,21,74,15,44)(5,16,22,45,75)(6,46,9,76,23)(7,77,47,24,10)(8,17,78,11,48)(25,34,50,69,62)(26,70,35,63,51)(27,64,71,52,36)(28,53,57,37,72)(29,38,54,65,58)(30,66,39,59,55)(31,60,67,56,40)(32,49,61,33,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;
G:=Group( (2,59)(4,61)(6,63)(8,57)(9,26)(11,28)(13,30)(15,32)(17,37)(19,39)(21,33)(23,35)(42,55)(44,49)(46,51)(48,53)(66,80)(68,74)(70,76)(72,78), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,79)(66,80)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,12,18,41,79)(2,42,13,80,19)(3,73,43,20,14)(4,21,74,15,44)(5,16,22,45,75)(6,46,9,76,23)(7,77,47,24,10)(8,17,78,11,48)(25,34,50,69,62)(26,70,35,63,51)(27,64,71,52,36)(28,53,57,37,72)(29,38,54,65,58)(30,66,39,59,55)(31,60,67,56,40)(32,49,61,33,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(2,59),(4,61),(6,63),(8,57),(9,26),(11,28),(13,30),(15,32),(17,37),(19,39),(21,33),(23,35),(42,55),(44,49),(46,51),(48,53),(66,80),(68,74),(70,76),(72,78)], [(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,57),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(41,54),(42,55),(43,56),(44,49),(45,50),(46,51),(47,52),(48,53),(65,79),(66,80),(67,73),(68,74),(69,75),(70,76),(71,77),(72,78)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80)], [(1,12,18,41,79),(2,42,13,80,19),(3,73,43,20,14),(4,21,74,15,44),(5,16,22,45,75),(6,46,9,76,23),(7,77,47,24,10),(8,17,78,11,48),(25,34,50,69,62),(26,70,35,63,51),(27,64,71,52,36),(28,53,57,37,72),(29,38,54,65,58),(30,66,39,59,55),(31,60,67,56,40),(32,49,61,33,68)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])
C23.2F5 is a maximal subgroup of
(C2×C20)⋊1C8 (C22×C4).F5 C5⋊(C23⋊C8) C24.F5 C5⋊C8⋊8D4 C5⋊C8⋊D4 D10⋊M4(2) Dic5⋊M4(2) C23.(C2×F5) Dic5.12M4(2) D10.11M4(2) C20.34M4(2) D10⋊10M4(2) Dic5.13M4(2) C20.30M4(2) D4×C5⋊C8 C5⋊C8⋊7D4 C20⋊2M4(2) (C2×D4).7F5 (C2×D4).8F5 C24.4F5 Dic5.22D12 C30.22M4(2) Dic5.S4
C23.2F5 is a maximal quotient of
C10.6M5(2) C20.29M4(2) (C2×C20)⋊1C8 C10.(C4⋊C8) Dic5.23D8 Dic5.12Q16 D4.(C5⋊C8) C24.F5 Dic5.22D12 C30.22M4(2)
Matrix representation of C23.2F5 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 40 | 0 | 0 |
0 | 0 | 8 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 35 |
0 | 0 | 0 | 0 | 7 | 34 |
0 | 2 | 0 | 0 | 0 | 0 |
21 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 14 | 31 | 0 | 0 |
0 | 0 | 32 | 27 | 0 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,8,0,0,0,0,40,40,0,0,0,0,0,0,0,7,0,0,0,0,35,34],[0,21,0,0,0,0,2,0,0,0,0,0,0,0,0,0,14,32,0,0,0,0,31,27,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23.2F5 in GAP, Magma, Sage, TeX
C_2^3._2F_5
% in TeX
G:=Group("C2^3.2F5");
// GroupNames label
G:=SmallGroup(160,87);
// by ID
G=gap.SmallGroup(160,87);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,86,2309,1169]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=1,e^4=c,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations
Export
Subgroup lattice of C23.2F5 in TeX
Character table of C23.2F5 in TeX